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1.     Introduction 

 

        In continuum mechanics, plate theories are mathematical descriptions of the 

mechanics of flat plates that draws on the theory of beams. Plates are the plane 

structural elements with a small thickness compared to the planar dimensions. A 

plate theory uses this disparity in length scale to reduce the full three-dimensional 

solid mechanics problem to a two-dimensional problem. From the existing plate 

theories two are widely accepted and used in engineering. These are the 

Kirchhoff-Love theory of plates (classical plate theory) [9] and the Mindlin-

Reissner theory of plates (first order shear plate theory) [8]. In both these theories 

the area (domain) of the plate is fixed and the aim is to calculate the deformation 

and stresses in a plate subjected to loads [6]. But some practical situations put a 

problem to find and then optimize (minimize or maximize) the eigenfrequency of 

the plate under across vibrations [7]. The optimization may be done by choosing 

the physical characteristics of the plate. Some engineering solutions require the 

optimization of the eigenfrequency by varying the form (area, domain) of the 

plate. For these problems it is expedient to consider a plate with non-fixed, 

variable area. Then the eigenfrequency of such plate may be considered as 

functional depending on the plate area (domain). By this way we arrive to the 

shape optimization problems [3]. Note that the existence in such problems is 

investigated by various authors [4, 5]. As is shown these problem are well-posed 

if the set of admissible domains satisfy some geometrical restrictions, for 

example, are open sets, or the functional under minimization depends on lower 

number of eigenvalues (in the case of plates-eigenfrequences). 

In this work we consider a plate with variable domain and study its 

eigenfrequency as a domain functional. Note that we use the approach proposed in 

[10] that gives new definition of the variation of the domain and then offers a 

scheme for calculation of the first variation of the functional with respect to 
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domain. This approach allows one to study a wide class of similar problems from 

theoretical and practical points of view [10]. 

Note that, given in [10] approach then was extended for lager classes in 

functions by some authors. For instance in [1] the shape derivative formula for the 

integral cost functional with respect to a class of admissible convex domains 

given in [10] is extended to the case of 
1,1

locW  functions. In [2] the obtained results 

are implemented in Brunn-Minkowski theory.  

 

2. Formulation of the problem and main results 
 

Consider the following problem 

 

,2 uu   Dx ,                                                        (1) 

DSx
n

u
u 




 ,0,0 ,                                                (2) 

where  is Laplace operator, 
nRD  is a bounded convex domain with smooth 

boundary   
2CSD  . The set of such domains denote by K . 

 It is known that the equation (1) with boundary condition (2) describes the 

transverse vibrations of the clamped plate.   in (1)  is an eigenvalue of the 

operator 2  and indeed describes the eigenfrequency of this plate [11]. 

 The object under investigation is the following minimization problem 

subject to (1), (2) 

 

,min)()()( 1  
D

dxxfDDJ                                       (3) 

where )(1 D  is the first eigenvalue (i.e. the first eigenfrequency of the clamped 

plate) of the problem (1), (2) corresponding to ,nRD   )(xf is given 

continuously differentiable in  nR  function. 

 Note that investigation of  some applied problems lead to the studying the 

functionals type (3) that put relation between eigenfrequency of the plate and 

some mechanical parameters, as well as external influence or physical 

characteristics of the plate. 

 The main result of the work is the following  

Theorem.  If the domain KD   is a solution of the problem (1)-(3), then  

                                          

DS

D dsxnPxfD ))(()(
4

1
)(1  .                             (4) 

Here   
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n

Dl
D RxxlxP 



),,(sup)(  

is a  support function of the domain nRD  , )(xn is outward normal to the 

boundary 
DS  in the point x , s is boundary element. 

Proof. It is known that for fixed  D  the first eigenvalue of the problem (1), (2) is 

calculated by formula [11] 

                                              ),,(inf)(1 DuID
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                                          (5) 
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 and inf  is taken over all functions, ),()( 12 DСDСu   being equal to  zero   at  

DS . 

 As we see, formula (5) defines 1  as a functional of D .  

In [10] the differentiability of the functional )(1 D with respect to  D  on 

K  is proved and the expressions are obtained for its first variation under different 

boundary conditions. It is known that the first eigenvalue of the problem (1), (2) is 

simple. In this case for this problem the expression is true 

 

            ,))(())(()()(
2

11 dsxnPxnPxuD

DS

DD                               (6) 

where ,, KDD   )(xn is an outward normal to 
DS  at the point x . 

As one may obtain from (6)   

                    ))(())(()()( 1111 tDttDttt   
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tS

tDttD todsxnPxnPxu . 

From this dividing by t  we get  

 

dsxnPxut

tDS
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)(

))(()()( )(
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'
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where 

                                               ).()( )()( xP
dt

d
xP tDtD        

Now let’s show that for the first eigenvalue of the problem (1), (2) in the 

domain  D  is true the formula 

        

DS

D dsxnPxuD ))(())((
4

1
)( 2

11 .                                     (8) 
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Let  0,)( 0  rrDrD . The first eigenfrequency of the clamped plate in 

the domain 0D  denote by    )(1 xu . This means that 

              00

2 ),()()( DxxuDxu jjj   .                                          (9) 

One can write this equation in the following equivalent form  
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The last shows that )(~ xu j  is an eigenvibration and  
 

4

0

r

Dj
- corresponding 

eigenfrequency of the plate with domain )(rD  i.e. 4

0 )(
)(

r

d
r

j

j


  . Substituting 

this into (9), considering )()(
0)( xPrxP DrD   and taking 1r we get (8). 

 In [10] differentiability of the functional 

 

                                      
D

dxxfDF )()(                                                       (10) 

is proved under the given conditions and the following formula is obtained for the 

its first variation  

                  

     .))(())(()()( dsxnPxnPxfDF

DS

DD                                  (11) 

 Now, let KD  be a solution of the problem (1)-(3). Then according to 

the optimality condition  

0)()(
2

1  xfxu ,  DSx .                                   (12) 

Multiplying (12) by ))(( xnPD and integrating over DS  one may get  
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Considering here (11) we get (4).  

Theorem is proved. 
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 Let’s consider a particular case. Suppose that 
nRxxf  ,1)( . In this case 

the functional (3) takes a form  

 

                                       min)()( 1  mesDDDJ  .                                (10) 

From (4) we obtain  

                                                

DS

D dsxnPD ))((
4

1
)(1 . 

In two dimensional case  

                                                     

DS

D mesDdsxnP ))((
4

1
. 

Thus  

                                                           mesDD )(1 . 

 Note, that when 0)( xf  the problem (1)-(3) has no solution. In this case 

the “increasing” of domain leads to decreasing of the eigenvalue. From (8) also 

follows the condition 01  . 

 Other particular cases also may be considered. 

Note that using the obtained formula (6) for the first variation of the 

eigenvalue of the problem (1), (2) with respect to domain and corresponding 

optimality condition the numerical algorithm is proposed for the finding of the 

optimal shape. This algorithm is similar to conditional gradient method. The 

numerical experiments have been carried out for some functionals of the first 

eigenvalue of the problem (1), (2), in two dimensional case.  
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